
Deep Belief Networks for Spam Filtering

Grigorios Tzortzis and Aristidis Likas
Department of Computer Science, University of Ioannina

GR 45110, Ioannina, Greece
E-mail: {gtzortzi, arly}@cs.uoi.gr

Abstract

This paper proposes a novel approach for spam filter-
ing based on the use of Deep Belief Networks (DBNs). In
contrast to conventional feedfoward neural networks hav-
ing one or two hidden layers, DBNs are feedforward
neural networks with many hidden layers. Until recently it
was not clear how to initialize the weights of deep neural
networks, which resulted in poor solutions with low gene-
ralization capabilities. A greedy layer-wise unsupervised
algorithm was recently proposed to tackle this problem
with successful results. In this work we present a metho-
dology for spam detection based on DBNs and evaluate
its performance on three widely used datasets. We also
compare our method to Support Vector Machines (SVMs)
which is the state-of-the-art method for spam filtering in
terms of classification performance. Our experiments
indicate that using DBNs to filter spam e-mails is a viable
methodology, since they achieve similar or even better
performance than SVMs on all three datasets.

1. Introduction

A characteristic of the last decade is the huge growth
of the spam phenomenon. According to recent surveys,
60% of all e-mail traffic is spam. In this way a great
amount of bandwidth is wasted and the e-mail systems are
overloaded. Due to the above serious problems, measures
must be taken to deal with the spam phenomenon. The
best such measure has proven to be spam filtering.

There are two general approaches to mail filtering:
knowledge engineering (KE) and machine learning (ML).
Spam filters based on the first approach usually exploit a
set of predefined and user-defined rules. Rules of this
kind try to identify in a message typical characteristics of
spam. However, it has been proved in practice that this
technique suffers from poor generalization.

The machine learning approach consists of the auto-
matic construction of a classifier based on a training set
(usually the e-mails of the user). Experiments with ma-
chine learning classifiers have shown that they achieve

higher generalization compared to rule based filters. A
variety of classification methods have been proposed for
the spam detection task. The most widely acceptable me-
thods are the Naïve Bayes classifier and the Support Vec-
tor Machines (SVMs) (e.g. [1], [2], [3], [4], [5]).

In this paper we propose the use of a Deep Belief
Network (DBN) to tackle the spam problem. DBNs are
feedforward neural networks which have a deep architec-
ture i.e. they consist of many hidden layers. Until recently
the main obstacle in using DBNs was the difficulty in
training such deep networks. Usually gradient based op-
timization gets stuck in poor local minima due to the ran-
dom initialization of the network weights. Hinton et al. [6]
introduced a new greedy layer-wise unsupervised algo-
rithm for initializing DBNs based on the use of Restricted
Boltzmann Machines (RBMs). This algorithm provides a
sensible initialization of the network weights which are
subsequently fine tuned using a gradient based algorithm
such as gradient descent. In a study reported in [7], the
effectiveness of the DBN initialization method [6] is justi-
fied on several datasets.

In this work, we propose a machine learning approach
for identifying spam mails based on DBNs and evaluate
its performance on three well-studied spam detection da-
tasets. We also compare our method with the SVM clas-
sifier [9] which constitutes the state-of-the-art method in
spam detection. The experimental results indicate that our
method based on DBNs provides similar or even better
performance than SVMs in spam filtering and should be
seriously considered as an effective alternative to SVMs.

The rest of this paper is organized as follows: in Sec-
tion 2 we present the details of training a DBN. Our expe-
rimental results and performance measures are presented
in Section 3 together with an analysis of the datasets used.
Finally Section 4 concludes this work.

2. Deep belief networks

A DBN is a feedforward neural network with a deep
architecture, i.e. with many hidden layers. An example of
a DBN for classification is shown in Figure 1. It consists
of an input layer which contains the input units (called

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.65

306

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.65

306

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.65

306

19th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/07 $25.00 © 2007 IEEE
DOI 10.1109/ICTAI.2007.65

306

visible units), a number L of hidden layers and finally an
output layer which has one unit for each class considered.
The parameters of a DBN are the weights W(j) between
the units of layers j-1 and j and the biases b(j) of layer j
(note that there are no biases in the input layer).

 One of the main problems for training deep neural
network architectures is how to initialize these parame-
ters. Random initialization causes optimization algorithms
to find poor local minima of the error function resulting in
low generalization. Hinton et al. [6] introduced a new
algorithm to solve the above problem based on the train-
ing of a sequence of RBMs. An RBM is a two layer recur-
rent neural network in which stochastic binary inputs are
connected to stochastic binary outputs using symmetrical-
ly weighted connections. The first layer corresponds to
inputs (visible units v) and the second layer to the hidden
units h of the RBM. After RBM training, hidden units can
be considered to act as feature detectors, i.e. they form a
compact representation of the input vector. An example of
an RBM is given in Figure 2.

An RBM is characterized by the energy function de-
fined as:

ሺv,hሻܧ ൌ ‐ hTWv - bTv - cTh (1)
where W is the weight matrix and b, c are the bias vectors
for visible and hidden layers respectively. The layer to
layer conditional distributions are:

 ܲሺvi ൌ 1 | h) ൌ σ(bi + ෍ Wjihj
j

) (2)

 ܲ൫hj ൌ 1 ห v) ൌ σ(cj + ෍ Wji
i

vi) (3)

where ߪሺܽሻ ൌ 1/ሺ1 ൅ ݁ି௔ሻ is the logistic function pro-
viding outputs in the (0, 1) range. By sampling using the
above probabilities the output (0 or 1) of an RBM unit is
determined.

Next we describe how to train an RBM and how it is
used in the construction of a DBN. First of all we must
emphasize that RBM training is unsupervised. Given a
training example, we ignore its class label and we propa-
gate it stochastically through the RBM. The outputs of the
hidden units follow the conditional distribution specified
in equation (3). We then sample from this distribution
thus producing a binary vector. This vector is propagated
in the opposite direction through the RBM (from hidden
units to visible units using (2)) which results in a “confa-
bulation” (reconstruction) of the original input data. Final-
ly the state of the hidden units is updated by propagating
this confabulation through the RBM.

The above procedure is performed repeatedly for all
the examples of the training set and then the update of the
parameters takes place as follows [8]:

 ∆Wji ൌ η൫ۃvi hj ۄdata െ confabulationۄ vi hjۃ ൯ (4)
 ∆bi ൌ ηሺۃvi ۄdata െ confabulation ሻ (5)ۄ viۃ
 ∆cj ൌ η൫ۃhj ۄdata െ confabulation ൯ (6)ۄ hjۃ

Figure 1. DBN architecture with L hidden layers.

Figure 2. RBM architecture.

where η > 0 is the learning rate and ۃvi hj ۄdata denotes the
fraction of times that visible unit i and hidden unit j are on
together when the original data is propagated through the
RBM. Similar is the meaning of the notation for the rest
of the parameters’ update formulas. We can repeat this
method for a defined number of epochs or until the recon-
struction error of the original data becomes small, i.e. the
confabulation is very similar to the data.

To construct a DBN we train sequentially as many
RBMs as the number of hidden layers in the DBN, i.e. for
a DBN with L hidden layers we have to train L RBMs.
These RBMs are placed one on top of the other resulting
in a DBN without the output layer. A natural question that
arises is which the inputs of each RBM are. For the first
RBM, which consists of the DBN’s input layer and the
first hidden layer, the answer is simply the training set.
For the second RBM, which consists of the DBN’s first
and second hidden layers, the answer is the output of the
previous RBM i.e. the activations of its hidden units when
they are driven by data, not confabulations. The same
holds for the remaining RBMs.

The above procedure is justified by a variational
bound [6]. It can be proved that under some general as-
sumptions, the addition of an extra hidden layer improves
a lower bound on the log probability that the network as-
signs to the training set.

After performing this layer-wise algorithm we have
obtained a good initialization for the hidden weights and
biases of the DBN. It still remains to determine the
weights from the last hidden layer to the outputs (as well
as the biases of the outputs) and also to fine tune the pa-
rameters of all layers together. In order to perform classi-
fication, as in spam filtering, we add an output layer with
two units, whose weights are randomly initialized, and the
DBN is fine tuned with respect to a typical supervised
criterion (such as mean square error or cross-entropy).

307307307307

3. Experimental evaluation

3.1. Testing corpora

The DBN performance is evaluated on three widely
used datasets namely LingSpam, EnronSpam (both avail-
able at http://www.iit.demokritos.gr/skel/i-config) and
SpamAssassin (available at http://www.spamassassin.org/
publiccorpus). LingSpam contains 2893 e-mails out of
which 2412 are legitimate messages and 481 are spam
messages resulting in a 16.6% spam ratio. Legitimate
messages come from the archives of the Linguist list and
spam messages from the inboxes of its creators. Each e-
mail contains the subject and the body only. In our expe-
riments we use the version where stop words are included
and no stemming has been performed.

The SpamAssassin corpus contains 4150 legitimate
messages and 1897 spam messages which make a total of
6047 messages with a 31.3% spam ratio. These e-mails
were collected from public fora or were donated by users
and come in row format.

The EnronSpam dataset was recently introduced in
[2]. The preprocessed version, which is used in our expe-
riments, contains only the subject and the body of the
messages. Here we focus on Enron1 which includes the
legitimate messages of one of the six Enron employees
contained on the EnronSpam corpus. It has a total of 5172
messages out of which 3672 are legitimate and 1500 are
spam resulting in a 29% spam ratio. The spam messages
were collected from the inbox of one of its creators.

3.2. Performance measures

To evaluate the DBN and SVM classifiers the follow-
ing performance measures were considered: Accuracy
(Acc) which measures the percentage of correctly classi-
fied messages, Ham Recall (HR) (resp. Spam Recall (SR))
which is the percentage of legitimate (resp. spam) mes-
sages assigned to the correct category and finally Ham
Precision (HP) (resp. Spam Precision (SP)) which is the
percentage of messages classified as legitimate (resp.
spam) that are indeed legitimate (resp. spam). By denot-
ing X→Y the messages of class X that are classified to
class Y we have the following definitions where S, L de-
note the spam and the legitimate class respectively:

 Acc ൌ |S→S| ൅ |L→L||S→S| ൅ |L→L| ൅ |S→L| ൅ |L→S| (7)

HR ൌ |L→L|
|L→L| ൅ |L→S|

 (8)

SR ൌ |S→S|
|S→S| ൅ |S→L|

(9)

HP ൌ |L→L|
|L→L| ൅ |S→L|

(10)

SP ൌ |S→S|
|S→S| ൅ |L→S|

(11)

3.3. Experimental results

Next we describe the details for DBN and SVM train-
ing as well as the performance results using the three da-
tasets. In what concerns message preprocessing, each
message is represented as a vector with length equal to the
number of distinct words of the corpus. This set of words
is known as the vocabulary. The value of a vector’s com-
ponent is the frequency of the corresponding word (as in
many other works on spam filtering e.g. [1], [2], [4]). We
removed stop words and words appearing in less than two
documents in each corpus. We further reduced the voca-
bulary size by retaining the top k words with respect to
information gain score. For LingSpam we set k = 1500,
while for SpamAssassin and Enron1 we set k = 1000. Fi-
nally on SpamAssassin we removed HTML tags.

All our experiments were performed using 10-fold
cross validation. LingSpam is already partitioned into 10
parts by its creators. For the other two datasets, we ran-
domly split the corpus to form 10 partitions in such a way
that the spam ratio of the original corpus was retained in
each partition.

As in many other SVM approaches to text classifica-
tion, we used the cosine kernel and so there is only one
parameter to determine a priori, which is the cost parame-
ter C. We tried several different values for C and kept the
one resulting in higher performance. We implemented the
SVM classifier using LIBSVM (available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm).

In order to apply the DBN for spam detection, one
must determine appropriate values for the number of hid-
den layers and units for each such layer. As suggested in
previous work [6], [7], [8], we experimented with 3 and 4
hidden layers in order to get a network with deep architec-
ture. Results indicate similar performance on each dataset
so we selected the simpler architecture with 3 hidden lay-
ers for the rest of our experiments. By trying some confi-
gurations with different number of hidden units, we found
that 50-50-200 neurons for the first, second and third
layer respectively give the best results. We observed that
moderate variations on the number of neurons in each
layer did not significantly affect the results. The same was
true when we varied the ratio of units between different
layers. To emphasize the robustness of the DBN method
with respect to architectural variations, we used the same
architecture in all experiments reported in this paper,
which is a DBN with 3 hidden layers and consists of
|vocabulary| input units, 50-50-200 hidden units and 2
output units, one for each class.

The RBMs were trained using binary vectors (indicat-
ing the presence or absence of a word in a message) in-
stead of normalized frequency vectors. This is done be-
cause RBMs naturally operate on binary input data, and
this decision led to improved performance in our experi-
ments. Each RBM was trained for 20 epochs. The fine

308308308308

tuning of the whole network was performed using conju-
gate gradients. Note that during fine tuning frequency
vectors are used as inputs.

As our aim is to compare DBNs with SVMs on the
spam filtering task here we report only the results ob-
tained with the best configuration for each classifier on
each dataset. Tables 1, 2 and 3 summarize the average of
those results over 10 folds on LingSpam, SpamAssassin
and Enron1 respectively.

These results make it clear that DBNs can achieve
similar performance to SVMs in spam filtering tasks.
Moreover in these experiments DBNs exhibit a slight ad-
vantage over SVMs by showing better accuracy on all
three datasets. Also the DBN outperforms the SVM
against all performance measures on SpamAssassin and
for the majority of measures on the other two collections.
This is a satisfactory result provided that SVMs are consi-
dered state-of-the-art and that DBNs’ results may be im-
proved by considering more epochs during training and
by addressing the problem of architectural specification in
a more systematic way. The above results justify that the
algorithm proposed for training DBNs does work in prac-
tice and we show that it can be used to filter spam e-mails.

4. Conclusions

In this paper we focused on the use of Deep Belief
Networks for spam filtering. DBNs have recently gained
significant interest for solving practical problems, because
an effective methodology for weight initialization has
been proposed. We studied the details of DBN training
and evaluated the performance of our approach on three
well-known e-mail collections. Our results were com-
pared to those achieved by Support Vector Machines. The
comparative results indicate that DBNs constitute a viable
solution for filtering e-mails.

Although the above results are encouraging provided
that it is, to our knowledge, the first attempt to employ
DBNs for spam detection, a number of issues could be
examined in future work, such as techniques for selecting
the number of hidden layers and units for each such layer.

References

[1] I. Androutsopoulos, G. Paliouras, and E. Michelakis,
Learning to Filter Unsolicited Commercial E-Mail, tech.
report 2004/2, NCSR “Demokritos”, 2004.

[2] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam

Filtering with Naive Bayes – Which Naive Bayes?”, 3rd
Conf. Email and Anti-Spam (CEAS 2006), Mountain View,
California, 2006.

[3] L. Zhang, J. Zhu, and T. Yao, “An Evaluation of Statistical

Spam Filtering Techniques”, ACM Trans. Asian Language
Information Processing, vol. 3, no. 4, 2004, pp. 243-269.

Table 1. DBNs vs. SVMs on LingSpam.

Performance
Measure

LingSpam
DBN

1500-50-50-200-2
SVM
C = 1

Accuracy 99.45% 99.24%
Spam Recall 98.54% 96.67%

Spam Precision 98.2% 98.74%
Ham Recall 99.63% 99.75%

Ham Precision 99.71% 99.35%

Table 2. DBNs vs. SVMs on SpamAssassin.

Performance
Measure

SpamAssassin
DBN

1000-50-50-200-2
SVM

C = 10
Accuracy 97.5% 97.32%

Spam Recall 95.51% 95.24%
Spam Precision 96.4% 96.14%

Ham Recall 98.39% 98.24%
Ham Precision 98.02% 97.89%

Table 3. DBNs vs. SVMs on Enron1.

Performance
Measure

Enron1
DBN

1000-50-50-200-2
SVM
C = 1

Accuracy 97.43% 96.92%
Spam Recall 96.47% 97.27%

Spam Precision 94.94% 92.74%
Ham Recall 97.83% 96.78%

Ham Precision 98.53% 98.84%

[4] J. Hovold, “Naive Bayes Spam Filtering Using Word-

Position-Based Attributes”, 2nd Conf. Email and Anti-
Spam (CEAS 2005), Stanford, California, 2005.

[5] G. Fumera, I. Pillai, and F. Roli, “Spam Filtering Based on

the Analysis of Text Information Embedded into Images”,
J. Machine Learning Research, vol. 7, 2006, pp. 2699-
2720.

[6] G.E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning

Algorithm for Deep Belief Nets”, Neural Computation, vol.
18, no. 7, July 2006, pp. 1527-1554.

[7] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle,

“Greedy Layer-Wise Training of Deep Networks”, Neural
Information Processing Systems (NIPS 2006), 2006.

[8] G.E. Hinton, and R.R. Salakhutdinov, “Reducing the Di-
mensionality of Data with Neural Networks”, Science, vol.
313, July 2006, pp.504-507.

[9] C.J.C. Burges, “A Tutorial on Support Vector Machines for

Pattern Recognition”, Data Mining and Knowledge Discov-
ery, vol. 2, no.2, 1998, pp.121-167.

309309309309

