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Abstract 
 

This paper proposes a novel approach for spam filter-
ing based on the use of Deep Belief Networks (DBNs). In 
contrast to conventional feedfoward neural networks hav-
ing one or two hidden layers, DBNs are feedforward 
neural networks with many hidden layers. Until recently it 
was not clear how to initialize the weights of deep neural 
networks, which resulted in poor solutions with low gene-
ralization capabilities. A greedy layer-wise unsupervised 
algorithm was recently proposed to tackle this problem 
with successful results. In this work we present a metho-
dology for spam detection based on DBNs and evaluate 
its performance on three widely used datasets. We also 
compare our method to Support Vector Machines (SVMs) 
which is the state-of-the-art method for spam filtering in 
terms of classification performance. Our experiments 
indicate that using DBNs to filter spam e-mails is a viable 
methodology, since they achieve similar or even better 
performance than SVMs on all three datasets. 

 

1. Introduction 

A characteristic of the last decade is the huge growth 
of the spam phenomenon. According to recent surveys, 
60% of all e-mail traffic is spam. In this way a great 
amount of bandwidth is wasted and the e-mail systems are 
overloaded. Due to the above serious problems, measures 
must be taken to deal with the spam phenomenon. The 
best such measure has proven to be spam filtering. 

There are two general approaches to mail filtering: 
knowledge engineering (KE) and machine learning (ML). 
Spam filters based on the first approach usually exploit a 
set of predefined and user-defined rules. Rules of this 
kind try to identify in a message typical characteristics of 
spam. However, it has been proved in practice that this 
technique suffers from poor generalization.  

The machine learning approach consists of the auto-
matic construction of a classifier based on a training set 
(usually the e-mails of the user). Experiments with ma-
chine learning classifiers have shown that they achieve 

higher generalization compared to rule based filters. A 
variety of classification methods have been proposed for 
the spam detection task. The most widely acceptable me-
thods are the Naïve Bayes classifier and the Support Vec-
tor Machines (SVMs) (e.g. [1], [2], [3], [4], [5]).  

In this paper we propose the use of a Deep Belief 
Network (DBN) to tackle the spam problem. DBNs are 
feedforward neural networks which have a deep architec-
ture i.e. they consist of many hidden layers. Until recently 
the main obstacle in using DBNs was the difficulty in 
training such deep networks. Usually gradient based op-
timization gets stuck in poor local minima due to the ran-
dom initialization of the network weights. Hinton et al. [6] 
introduced a new greedy layer-wise unsupervised algo-
rithm for initializing DBNs based on the use of Restricted 
Boltzmann Machines (RBMs). This algorithm provides a 
sensible initialization of the network weights which are 
subsequently fine tuned using a gradient based algorithm 
such as gradient descent. In a study reported in [7], the 
effectiveness of the DBN initialization method [6] is justi-
fied on several datasets. 

In this work, we propose a machine learning approach 
for identifying spam mails based on DBNs and evaluate 
its performance on three well-studied spam detection da-
tasets. We also compare our method with the SVM clas-
sifier [9] which constitutes the state-of-the-art method in 
spam detection. The experimental results indicate that our 
method based on DBNs provides similar or even better 
performance than SVMs in spam filtering and should be 
seriously considered as an effective alternative to SVMs. 

The rest of this paper is organized as follows: in Sec-
tion 2 we present the details of training a DBN. Our expe-
rimental results and performance measures are presented 
in Section 3 together with an analysis of the datasets used. 
Finally Section 4 concludes this work. 

2. Deep belief networks 

A DBN is a feedforward neural network with a deep 
architecture, i.e. with many hidden layers. An example of 
a DBN for classification is shown in Figure 1. It consists 
of an input layer which contains the input units (called 
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visible units), a number L of hidden layers and finally an 
output layer which has one unit for each class considered. 
The parameters of a DBN are the weights W(j) between 
the units of layers j-1 and  j and the biases b(j) of layer j 
(note that there are no biases in the input layer). 

 One of the main problems for training deep neural 
network architectures is how to initialize these parame-
ters. Random initialization causes optimization algorithms 
to find poor local minima of the error function resulting in 
low generalization. Hinton et al. [6] introduced a new 
algorithm to solve the above problem based on the train-
ing of a sequence of RBMs.  An RBM is a two layer recur-
rent neural network in which stochastic binary inputs are 
connected to stochastic binary outputs using symmetrical-
ly weighted connections. The first layer corresponds to 
inputs (visible units v) and the second layer to the hidden 
units h of the RBM. After RBM training, hidden units can 
be considered to act as feature detectors, i.e. they form a 
compact representation of the input vector. An example of 
an RBM is given in Figure 2. 

An RBM is characterized by the energy function de-
fined as: 

ሺv,hሻܧ  ൌ  ‐ hTWv  -  bTv  -  cTh (1)
where W is the weight matrix and b, c are the bias vectors 
for visible and hidden layers respectively. The layer to 
layer conditional distributions are: 

 ܲሺvi ൌ  1 | h) ൌ  σ(bi + ෍ Wjihj
j

) (2)

 ܲ൫hj ൌ  1 ห v) ൌ  σ(cj + ෍ Wji
i

vi) (3)

where ߪሺܽሻ ൌ 1/ሺ1 ൅ ݁ି௔ሻ is the logistic function pro-
viding outputs in the (0, 1) range. By sampling using the 
above probabilities the output (0 or 1) of an RBM unit is 
determined. 

Next we describe how to train an RBM and how it is 
used in the construction of a DBN. First of all we must 
emphasize that RBM training is unsupervised. Given a 
training example, we ignore its class label and we propa-
gate it stochastically through the RBM. The outputs of the 
hidden units follow the conditional distribution specified 
in equation (3). We then sample from this distribution 
thus producing a binary vector. This vector is propagated 
in the opposite direction through the RBM (from hidden 
units to visible units using (2)) which results in a “confa-
bulation” (reconstruction) of the original input data. Final-
ly the state of the hidden units is updated by propagating 
this confabulation through the RBM. 

The above procedure is performed repeatedly for all 
the examples of the training set and then the update of the 
parameters takes place as follows [8]: 

 ∆Wji  ൌ  η൫ۃvi hj ۄdata  െ confabulationۄ vi hjۃ  ൯ (4)
 ∆bi ൌ  ηሺۃvi ۄdata  െ confabulation ሻ (5)ۄ viۃ 
 ∆cj ൌ  η൫ۃhj ۄdata  െ confabulation ൯ (6)ۄ hjۃ 

 
Figure 1. DBN architecture with L hidden layers. 

 
Figure 2. RBM architecture. 

where η > 0 is the learning rate and ۃvi hj ۄdata  denotes the 
fraction of times that visible unit i and hidden unit j are on 
together when the original data is propagated through the 
RBM. Similar is the meaning of the notation for the rest 
of the parameters’ update formulas. We can repeat this 
method for a defined number of epochs or until the recon-
struction error of the original data becomes small, i.e. the 
confabulation is very similar to the data. 

To construct a DBN we train sequentially as many 
RBMs as the number of hidden layers in the DBN, i.e. for 
a DBN with L hidden layers we have to train L RBMs. 
These RBMs are placed one on top of the other resulting 
in a DBN without the output layer. A natural question that 
arises is which the inputs of each RBM are. For the first 
RBM, which consists of the DBN’s input layer and the 
first hidden layer, the answer is simply the training set. 
For the second RBM, which consists of the DBN’s first 
and second hidden layers, the answer is the output of the 
previous RBM i.e. the activations of its hidden units when 
they are driven by data, not confabulations. The same 
holds for the remaining RBMs. 

The above procedure is justified by a variational 
bound [6]. It can be proved that under some general as-
sumptions, the addition of an extra hidden layer improves 
a lower bound on the log probability that the network as-
signs to the training set. 

After performing this layer-wise algorithm we have 
obtained a good initialization for the hidden weights and 
biases of the DBN. It still remains to determine the 
weights from the last hidden layer to the outputs (as well 
as the biases of the outputs) and also to fine tune the pa-
rameters of all layers together. In order to perform classi-
fication, as in spam filtering, we add an output layer with 
two units, whose weights are randomly initialized, and the 
DBN is fine tuned with respect to a typical supervised 
criterion (such as mean square error or cross-entropy). 
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3. Experimental evaluation 

3.1. Testing corpora 

The DBN performance is evaluated on three widely 
used datasets namely LingSpam, EnronSpam (both avail-
able at http://www.iit.demokritos.gr/skel/i-config) and 
SpamAssassin (available at http://www.spamassassin.org/ 
publiccorpus). LingSpam contains 2893 e-mails out of 
which 2412 are legitimate messages and 481 are spam 
messages resulting in a 16.6% spam ratio. Legitimate 
messages come from the archives of the Linguist list and 
spam messages from the inboxes of its creators. Each e-
mail contains the subject and the body only. In our expe-
riments we use the version where stop words are included 
and no stemming has been performed.  

The SpamAssassin corpus contains 4150 legitimate 
messages and 1897 spam messages which make a total of 
6047 messages with a 31.3% spam ratio. These e-mails 
were collected from public fora or were donated by users 
and come in row format. 

The EnronSpam dataset was recently introduced in 
[2]. The preprocessed version, which is used in our expe-
riments, contains only the subject and the body of the 
messages. Here we focus on Enron1 which includes the 
legitimate messages of one of the six Enron employees 
contained on the EnronSpam corpus. It has a total of 5172 
messages out of which 3672 are legitimate and 1500 are 
spam resulting in a 29% spam ratio. The spam messages 
were collected from the inbox of one of its creators.  

3.2. Performance measures 

To evaluate the DBN and SVM classifiers the follow-
ing performance measures were considered: Accuracy 
(Acc) which measures the percentage of correctly classi-
fied messages, Ham Recall (HR) (resp. Spam Recall (SR)) 
which is the percentage of legitimate (resp. spam) mes-
sages assigned to the correct category and finally Ham 
Precision (HP) (resp. Spam Precision (SP)) which is the 
percentage of messages classified as legitimate (resp. 
spam) that are indeed legitimate (resp. spam). By denot-
ing X→Y the messages of class X that are classified to 
class Y we have the following definitions where S, L de-
note the spam and the legitimate class respectively: 
 

 Acc ൌ  |S→S| ൅  |L→L||S→S| ൅  |L→L| ൅ |S→L| ൅ |L→S| (7)

 

HR ൌ  |L→L|
|L→L| ൅  |L→S|

 (8) 

 

SR ൌ  |S→S|
|S→S| ൅ |S→L|

(9)

 

HP ൌ  |L→L|
|L→L| ൅  |S→L|

(10)  

SP ൌ  |S→S|
|S→S| ൅ |L→S|

(11)

3.3. Experimental results 

Next we describe the details for DBN and SVM train-
ing as well as the performance results using the three da-
tasets. In what concerns message preprocessing, each 
message is represented as a vector with length equal to the 
number of distinct words of the corpus. This set of words 
is known as the vocabulary. The value of a vector’s com-
ponent is the frequency of the corresponding word (as in 
many other works on spam filtering e.g. [1], [2], [4]). We 
removed stop words and words appearing in less than two 
documents in each corpus. We further reduced the voca-
bulary size by retaining the top k words with respect to 
information gain score. For LingSpam we set k = 1500, 
while for SpamAssassin and Enron1 we set k = 1000. Fi-
nally on SpamAssassin we removed HTML tags. 

All our experiments were performed using 10-fold 
cross validation. LingSpam is already partitioned into 10 
parts by its creators. For the other two datasets, we ran-
domly split the corpus to form 10 partitions in such a way 
that the spam ratio of the original corpus was retained in 
each partition. 

As in many other SVM approaches to text classifica-
tion, we used the cosine kernel and so there is only one 
parameter to determine a priori, which is the cost parame-
ter C. We tried several different values for C and kept the 
one resulting in higher performance. We implemented the 
SVM classifier using LIBSVM (available at http:// 
www.csie.ntu.edu.tw/~cjlin/libsvm). 

In order to apply the DBN for spam detection, one 
must determine appropriate values for the number of hid-
den layers and units for each such layer. As suggested in 
previous work [6], [7], [8], we experimented with 3 and 4 
hidden layers in order to get a network with deep architec-
ture. Results indicate similar performance on each dataset 
so we selected the simpler architecture with 3 hidden lay-
ers for the rest of our experiments. By trying some confi-
gurations with different number of hidden units, we found 
that 50-50-200 neurons for the first, second and third 
layer respectively give the best results. We observed that 
moderate variations on the number of neurons in each 
layer did not significantly affect the results. The same was 
true when we varied the ratio of units between different 
layers. To emphasize the robustness of the DBN method 
with respect to architectural variations, we used the same 
architecture in all experiments reported in this paper, 
which is a DBN with 3 hidden layers and consists of 
|vocabulary| input units, 50-50-200 hidden units and 2 
output units, one for each class. 

The RBMs were trained using binary vectors (indicat-
ing the presence or absence of a word in a message) in-
stead of normalized frequency vectors. This is done be-
cause RBMs naturally operate on binary input data, and 
this decision led to improved performance in our experi-
ments. Each RBM was trained for 20 epochs. The fine 
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tuning of the whole network was performed using conju-
gate gradients. Note that during fine tuning frequency 
vectors are used as inputs. 

As our aim is to compare DBNs with SVMs on the 
spam filtering task here we report only the results ob-
tained with the best configuration for each classifier on 
each dataset. Tables 1, 2 and 3 summarize the average of 
those results over 10 folds on LingSpam, SpamAssassin 
and Enron1 respectively. 

These results make it clear that DBNs can achieve 
similar performance to SVMs in spam filtering tasks. 
Moreover in these experiments DBNs exhibit a slight ad-
vantage over SVMs by showing better accuracy on all 
three datasets. Also the DBN outperforms the SVM 
against all performance measures on SpamAssassin and 
for the majority of measures on the other two collections. 
This is a satisfactory result provided that SVMs are consi-
dered state-of-the-art and that DBNs’ results may be im-
proved by considering more epochs during training and 
by addressing the problem of architectural specification in 
a more systematic way. The above results justify that the 
algorithm proposed for training DBNs does work in prac-
tice and we show that it can be used to filter spam e-mails. 

4. Conclusions 

In this paper we focused on the use of Deep Belief 
Networks for spam filtering. DBNs have recently gained 
significant interest for solving practical problems, because 
an effective methodology for weight initialization has 
been proposed. We studied the details of DBN training 
and evaluated the performance of our approach on three 
well-known e-mail collections. Our results were com-
pared to those achieved by Support Vector Machines. The 
comparative results indicate that DBNs constitute a viable 
solution for filtering e-mails. 

Although the above results are encouraging provided 
that it is, to our knowledge, the first attempt to employ 
DBNs for spam detection, a number of issues could be 
examined in future work, such as techniques for selecting 
the number of hidden layers and units for each such layer. 
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